

S-82K1A系列

1

www.ablic.com 带充放电控制功能 1节电池用电池保护IC

© ABLIC Inc., 2019-2020 Rev.1.1_00

S-82K1A系列内置高精度电压检测电路和延迟电路,是用于锂离子/锂聚合物可充电电池的保护IC。

S-82K1A系列最适合于对1节锂离子 / 锂聚合物可充电电池组的过充电、过放电和过电流的保护。

S-82K1A系列通过使用外接过电流检测电阻,实现受温度变化影响小的高精度过电流保护。

另外, S-82K1A系列还备有充放电控制信号输入端子, 可通过外部信号进行充放电控制。

■ 特点

• 高精度电压检测电路

过充电检测电压 3.500 V ~ 4.600 V (5 mV进阶) 精度±15 mV 过充电解除电压 $3.100 \text{ V} \sim 4.600 \text{ V}^{*1}$ 精度±50 mV 过放电检测电压 2.000 V~3.000 V (10 mV进阶) 精度±50 mV 过放电解除电压 2.000 V ~ 3.400 V*2 精度±75 mV 放电过电流检测电压1 0.003 V ~ 0.100 V (0.5 mV进阶) 精度±1.0 mV 0.010 V ~ 0.100 V (1 mV进阶) 精度±3 mV 放电过电流检测电压2 0.020 V ~ 0.100 V (1 mV进阶) 负载短路检测电压 精度±5 mV 充电过电流检测电压 -0.100 V ~ -0.003 V (0.5 mV进阶) 精度±1.0 mV

• 各种检测延迟时间仅通过内置电路即可实现 (不需要外接电容)

• 充放电控制功能

CTL端子的控制逻辑: 动态 "H"、动态 "L"

CTL端子内部电阻: 上拉、下拉

CTL端子内部电阻值: 1 $M\Omega \sim 10 M\Omega (1 M\Omega进阶)$

• 放电过电流控制功能

放电过电流状态解除条件: 断开负载

放电过电流状态解除电压: $V_{RIOV} = V_{DD} \times 0.8$ (典型值)

通过CTL端子进行的放电过电流状态复位功能: 有、无
 向0 V电池充电: 允许、禁止
 休眠功能: 有、无

• 高耐压: VM端子、CO端子: 绝对最大额定值28 V

• 工作温度范围广: Ta = -40°C ~ +85°C

• 消耗电流低

工作时: 2.0 μA (典型值)、4.0 μA (最大值) (Ta = +25°C)

休眠时: 50 nA (最大值) (Ta = +25°C) 过放电时: 0.5 μA (最大值) (Ta = +25°C)

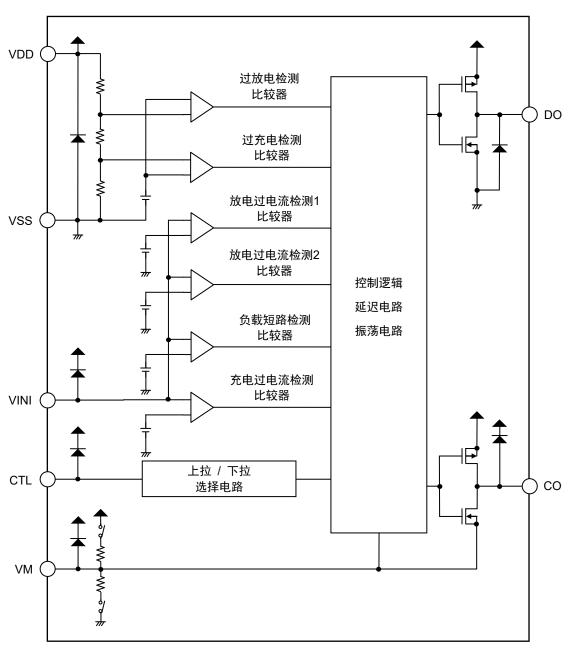
• 无铅 (Sn 100%)、无卤素

*1. 过充电解除电压 = 过充电检测电压 – 过充电滞后电压

(过充电滞后电压为0 V或者可在0.1 V~0.4 V的范围内以50 mV为进阶单位进行选择)

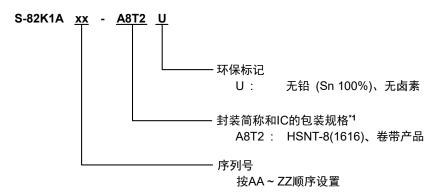
*2. 过放电解除电压 = 过放电检测电压 + 过放电滞后电压

(过放电滞后电压为0 V或者可在0.1 V~0.7 V的范围内以100 mV为进阶单位进行选择)


■ 用途

- 锂离子可充电电池组
- 锂聚合物可充电电池组

業陸 ■


• HSNT-8(1616)

■ 框图

■ 产品型号的构成

1. 产品名

*1. 请参阅卷带图。

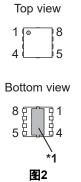

2. 封装

表1 封装图纸号码

封装名	外形尺寸图	卷带图	带卷图	焊盘图
HSNT-8(1616)	PY008-A-P-SD	PY008-A-C-SD	PY008-A-R-SD	PY008-A-L-SD

■ 引脚排列图

1. HSNT-8(1616)

		14-
引脚号	符号	描述
1	CTL	充放电控制信号输入端子
2	VM	外部负电压输入端子
3	со	充电控制用FET门极连接端子 (CMOS输出)
4	DO	放电控制用FET门极连接端子 (CMOS输出)
5	VSS	负电源输入端子
6	VDD	正电源输入端子
7	VINI	过电流检测端子
8	NC*2	无连接

表2

- *1. 请将阴影部分的底面散热板与基板连接,并将电位设置为开路状态或V_{DD}。 但请不要作为电极使用。
- *2. NC表示从电气的角度而言处于开路状态。 所以,与VDD端子或VSS端子连接均无问题。

■ 绝对最大额定值

表3

(除特殊注明以外: Ta = +25°C)

项目	符号	适用端子	绝对最大额定值	单位
VDD端子 – VSS端子间输入电压	V _{DS}	VDD	$V_{SS} - 0.3 \sim V_{SS} + 6$	V
VINI输入端子电压	V_{VINI}	VINI	$V_{DD} - 6 \sim V_{DD} + 0.3$	V
CTL输入端子电压	V _{CTL}	CTL	$V_{DD} - 6 \sim V_{DD} + 0.3$	V
VM输入端子电压	V_{VM}	VM	$V_{DD} - 28 \sim V_{DD} + 0.3$	V
DO输出端子电压	V _{DO}	DO	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V
CO输出端子电压	Vco	СО	$V_{DD}-28 \sim V_{DD}+0.3$	V
工作环境温度	T _{opr}	_	−40 ~ +85	°C
保存温度	T _{stg}	_	−55 ~ +125	°C

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性的损伤。

■ 热敏电阻值

表4

项目	符号	条件	最小值	典型值	最大值	单位	
			Board A	1	214	_	°C/W
结至环境热阻* ¹	θЈΑ	HSNT-8(1616)	Board B	1	172	-	°C/W
			Board C	ı	1	-	°C/W
			Board D	ı	1	-	°C/W
			Board E	-	-	-	°C/W

^{*1.} 测定环境: 遵循JEDEC STANDARD JESD51-2A标准

备注 关于详情,请参阅 "■ Power Dissipation" 和 "Test Board"。

■ 电气特性

1. Ta = +25°C

表5

(除特殊注明以外: Ta = +25°C)

	1			(ls	余特殊注明以外:	ıa = -	-25°C)
项目	符号	条件	最小值	典型值	最大值	单位	测定 电路
检测电压							
过充电检测电压	Vcu	_	Vcu - 0.015	Vcu	V _{CU} + 0.015	V	1
\		V _{CL} ≠ V _{CU}	V _{CL} - 0.050	VcL	V _{CL} + 0.050	V	1
过充电解除电压	VcL	VcL = Vcu	V _{CL} - 0.020	VcL	V _{CL} + 0.015	V	1
过放电检测电压	V_{DL}	_	V _{DL} – 0.050	V _{DL}	V _{DL} + 0.050	V	2
		V _{DL} ≠ V _{DU}	V _{DU} – 0.075	V _{DU}	V _{DU} + 0.075	V	2
过放电解除电压	VDU	$V_{DL} = V_{DU}$	V _{DU} – 0.050	V _{DU}	V _{DU} + 0.050	V	2
放电过电流检测电压1	V _{DIOV1}	-	V _{DIOV1} – 0.0010	V _{DIOV1}	$V_{DIOV1} + 0.0010$	V	5
放电过电流检测电压2	V _{DIOV2}	_	V _{DIOV2} – 0.003	V _{DIOV2}	V _{DIOV2} + 0.003	V	2
负载短路检测电压	VSHORT	_	V _{SHORT} – 0.005	Vshort	V _{SHORT} + 0.005	V	2
负载短路检测电压2	V _{SHORT2}	_	V _{DD} – 1.2	V _{DD} – 0.8	V _{DD} – 0.5	V	2
充电过电流检测电压	Vciov	_	V _{CIOV} - 0.0010	Vciov	V _{CIOV} + 0.0010	V	2
放电过电流解除电压	V _{RIOV}	V _{DD} = 3.4 V	$V_{DD} \times 0.77$	$V_{DD} \times 0.80$	$V_{DD} \times 0.83$	V	5
向0 V电池充电		•	•	JI.		ı	
开始向0 V电池充电的充电器 电压	V ₀ CHA	允许向0 V电池充电	0.7	1.1	1.5	٧	4
禁止向0 V电池充电的电池 电压	Voinh	禁止向0 V电池充电	0.9	1.2	1.5	٧	2
内部电阻		l	l			ı	
VDD端子 – VM端子间电阻	R _{VMD}	$V_{DD} = 1.8 \text{ V}, V_{VM} = 0 \text{ V}$	500	1250	2500	kΩ	3
VM端子 – VSS端子间电阻	R _{VMS}	$V_{DD} = 3.4 \text{ V}, V_{VM} = 1.0 \text{ V}$	5	10	15	kΩ	3
CTL端子内部电阻	Rctl	_	R _{CTL} × 0.5	Rctl	R _{CTL} × 2.0	МΩ	3
输入电压							
VDD端子 – VSS端子间	.,		4.5		6.0	.,	
工作电压	V _{DSOP1}	_	1.5	-	6.0	V	_
VDD端子 – VM端子间 工作电压	V _{DSOP2}	_	1.5	_	28	V	_
CTL端子电压 "H"	Vctlh	V _{DD} = 3.4 V	V _{CTLH} – 0.3	Vctlh	V _{СТЬН} + 0.3	V	2
CTL端子电压 "L"	VCTLL		VCTLL - 0.3	VCTLL	VCTLL + 0.3	V	2
输入电流	VCILL		VCILL - 0.5	VCILL	VCILL + 0.5	V	
工作时消耗电流	IOPE	V _{DD} = 3.4 V, V _{VM} = 0 V	_	2.0	4.0	μА	3
休眠时消耗电流	I _{PDN}	$V_{DD} = V_{VM} = 1.5 \text{ V}$	_	-	0.05	μΑ	3
过放电时消耗电流	IOPED	$V_{DD} = V_{VM} = 1.5 \text{ V}$	_	_	0.5	μΑ	3
输出电阻	IOI LD	V V V V V V V V V V V V V V V V V V V		1	0.0	μοι	
CO端子电阻 "H"	Rcoн	_	5	10	20	kΩ	4
CO端子电阻 "L"	Rcol	_	5	10	20	kΩ	4
DO端子电阻 "H"	RDOH	_	5	10	20	kΩ	4
DO端子电阻 "L"	RDOL	_	1	2	4	kΩ	4
延迟时间		L	<u> </u>	<u> </u>			
过充电检测延迟时间	tcu	_	$t_{\text{CU}} \times 0.7$	tcu	t _{CU} × 1.3	_	5
过放电检测延迟时间	tol	_	$t_{DL} \times 0.7$	tDL	$t_{DL} \times 1.3$	_	5
放电过电流检测延迟时间1	t _{DIOV1}	_	t _{DIOV1} × 0.75	t _{DIOV1}	t _{DIOV1} × 1.25	_	5
放电过电流检测延迟时间2	t _{DIOV2}	_	$t_{DIOV2} \times 0.7$	t _{DIOV2}	$t_{DIOV2} \times 1.3$	_	5
负载短路检测延迟时间	tshort	_	tshort × 0.7	tshort	tshort × 1.3	_	5
充电过电流检测延迟时间	tciov	_	t _{CIOV} × 0.7	tciov	tciov × 1.3	_	5
充放电禁止延迟时间	tстL		t _{CTL} × 0.7	tстL	$t_{\text{CTL}} \times 1.3$		5

2. Ta = -20° C ~ $+60^{\circ}$ C^{*1}

表6

(除特殊注明以外: Ta =-20°C~+60°C*1)

	,		1	(1)亦行2水/工門	以外 . Ta20 (J ~ +C	
项目	符号	条件	最小值	典型值	最大值	单位	测定 电路
检测电压			•				
过充电检测电压	Vcu	-	Vcu - 0.020	Vcu	Vcu+0.020	V	1
	.,	V _{CL} ≠ V _{CU}	V _{CL} - 0.065	V _{CL}	V _{CL} +0.057	V	1
过充电解除电压	VcL	VcL = Vcu	Vcl - 0.025	VcL	VcL+0.020	V	1
过放电检测电压	V _{DL}	_	V _{DL} - 0.060	V _{DL}	V _{DL} + 0.055	V	2
		$V_{DL} \neq V_{DU}$	V _{DU} – 0.085	V _{DU}	V _{DU} + 0.080	V	2
过放电解除电压	VDU	$V_{DL} = V_{DU}$	V _{DU} – 0.060	V _{DU}	V _{DU} + 0.055	V	2
	V _{DIOV1}	_	V _{DIOV1} – 0.0015	V _{DIOV1}	V _{DIOV1} + 0.0015	V	5
放电过电流检测电压2	V _{DIOV2}	_	V _{DIOV2} – 0.003	V _{DIOV2}	$V_{DIOV2} + 0.003$	V	2
负载短路检测电压	VSHORT	_	V _{SHORT} - 0.005	VSHORT	V _{SHORT} + 0.005	V	2
负载短路检测电压2	V _{SHORT2}	_	V _{DD} – 1.4	V _{DD} – 0.8	V _{DD} – 0.3	V	2
充电过电流检测电压	VCIOV	_	V _{CIOV} – 0.0015	Vciov	V _{CIOV} + 0.0015	V	2
放电过电流解除电压	V _{RIOV}	V _{DD} = 3.4 V	$V_{DD} \times 0.77$	$V_{DD} \times 0.80$	$V_{DD} \times 0.83$	V	5
向0 V电池充电	-101	135 011 1	100 0	100 1100			
开始向0 V电池充电的充电器	.,	/.)	0 -			T , ,	
电压	V ₀ CHA	允许向0 V电池充电	0.5	1.1	1.7	V	4
禁止向0 V电池充电的电池 电压	Voinh	禁止向0 V电池充电	0.7	1.2	1.7	V	2
内部电阻						1	
VDD端子 – VM端子间电阻	Rvmd	V _{DD} = 1.8 V, V _{VM} = 0 V	250	1250	3500	kΩ	3
VM端子 – VSS端子间电阻	R _{VMS}	$V_{DD} = 3.4 \text{ V}, V_{VM} = 1.0 \text{ V}$	3.5	10	20	kΩ	3
CTL端子内部电阻	Rctl	_	RcTL × 0.25	Rctl	RCTL × 3.0	МΩ	3
输入电压	· ·		l				
VDD端子 – VSS端子间	.,		4.5		0.0	\ , ,	
工作电压	V _{DSOP1}	_	1.5	_	6.0	V	_
VDD端子 – VM端子间	VDSOP2		1.5		28	V	_
工作电压	V DSOP2	_	1.5	_	20	V	
CTL端子电压 "H"	Vctlh	V _{DD} = 3.4 V	VстLн – 0.4	Vctlh	VcTLH + 0.4	V	2
CTL端子电压 "L"	VCTLL	_	Vctll – 0.4	Vctll	Vctll + 0.4	V	2
输入电流					_		
工作时消耗电流	IOPE	$V_{DD} = 3.4 \text{ V}, V_{VM} = 0 \text{ V}$	_	2.0	5.0	μΑ	3
休眠时消耗电流	IPDN	$V_{DD} = V_{VM} = 1.5 V$	_	_	0.1	μΑ	3
过放电时消耗电流	IOPED	$V_{DD} = V_{VM} = 1.5 V$	_	_	1.0	μΑ	3
输出电阻	-						
CO端子电阻 "H"	Rсон	_	2.5	10	30	kΩ	4
CO端子电阻 "L"	Rcol	_	2.5	10	30	kΩ	4
DO端子电阻 "H"	Rоон	_	2.5	10	30	kΩ	4
DO端子电阻 "L"	RDOL	_	0.5	2	6	kΩ	4
延迟时间							
过充电检测延迟时间	tcu	_	t _{CU} × 0.6	tcu	$t_{\text{CU}} \times 1.4$	_	5
过放电检测延迟时间	tol	_	t _{DL} × 0.6	tol	tol×1.4	_	5
放电过电流检测延迟时间1	t _{DIOV1}	_	$t_{\text{DIOV1}} \times 0.65$	t _{DIOV1}	$t_{DIOV1} \times 1.35$	_	5
放电过电流检测延迟时间2	tdiov2	_	tdiov2 × 0.6	t diov2	tdiov2 × 1.4	_	5
负载短路检测延迟时间	tshort	_	tshort × 0.6	tshort	tshort × 1.4	_	5
充电过电流检测延迟时间	tciov	_	tciov × 0.6	tciov	tciov × 1.4	_	5
充放电禁止延迟时间	t ctl	-	t _{CTL} × 0.6	tстL	$t_{\text{CTL}} \times 1.4$	_	5

充放电禁止延迟时间
 tcrl
 tcrl
 × 0.6
 |

 *1.
 并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。

3. Ta = -40° C ~ $+85^{\circ}$ C^{*1}

表7

(除特殊注明以外: Ta =-40°C~+85°C*1)

	1	1	1	(赤イサンスト/エリ	引以外:Ta =-40°(<i>y</i> ~ +0	
项目	符号	条件	最小值	典型值	最大值	单位	测定 电路
检测电压	_					_	
过充电检测电压	Vcu	_	Vcu – 0.045	Vcu	Vcu+0.030	V	1
\	.,	V _{CL} ≠ V _{CU}	V _{CL} - 0.080	VcL	V _{CL} +0.060	V	1
过充电解除电压	VcL	VcL = Vcu	Vcl - 0.050	VcL	VcL+0.030	V	1
过放电检测电压	V_{DL}	_	V _{DL} – 0.080	V_{DL}	V _{DL} +0.060	V	2
	.,	V _{DL} ≠ V _{DU}	V _{DU} – 0.105	V _{DU}	V _{DU} + 0.085	V	2
过放电解除电压	Vdu	$V_{DL} = V_{DU}$	V _{DU} – 0.080	V _{DU}	V _{DU} + 0.060	V	2
放电过电流检测电压1	V _{DIOV1}	_	V _{DIOV1} – 0.0015	V _{DIOV1}	V _{DIOV1} + 0.0015	V	5
放电过电流检测电压2	V _{DIOV2}	_	V _{DIOV2} – 0.003	V _{DIOV2}	V _{DIOV2} + 0.003	V	2
负载短路检测电压	Vshort	_	V _{SHORT} – 0.005	Vshort	V _{SHORT} + 0.005	V	2
负载短路检测电压2	V _{SHORT2}	_	V _{DD} – 1.4	V _{DD} – 0.8	V _{DD} – 0.3	V	2
充电过电流检测电压	Vciov	_	V _{CIOV} – 0.0015	Vciov	V _{CIOV} + 0.0015	V	2
放电过电流解除电压	VRIOV	V _{DD} = 3.4 V	$V_{DD} \times 0.77$	$V_{DD} \times 0.80$	$V_{DD} \times 0.83$	V	5
向0 V电池充电	1			l		1	
开始向0 V电池充电的充电器 电压	V _{0CHA}	允许向0 V电池充电	0.5	1.1	1.7	V	4
禁止向0 V电池充电的电池 电压	Voinh	禁止向0 V电池充电	0.7	1.2	1.7	٧	2
内部电阻	1		l				
VDD端子 – VM端子间电阻	Rvmd	V _{DD} = 1.8 V, V _{VM} = 0 V	250	1250	3500	kΩ	3
VM端子 – VSS端子间电阻	Rvms	$V_{DD} = 3.4 \text{ V}, V_{VM} = 1.0 \text{ V}$	3.5	10	20	kΩ	3
CTL端子内部电阻	Rctl	_	RcTL × 0.25	RстL	RCTL × 3.0	МΩ	3
输入电压	I		l.	l			
VDD端子 – VSS端子间	.,		4.5		0.0	.,	
工作电压	VDSOP1	_	1.5	_	6.0	V	_
VDD端子 – VM端子间	\/		1 F		28	V	
工作电压	VDSOP2	_	1.5	_	20	V	_
CTL端子电压 "H"	Vctlh	V _{DD} = 3.4 V	VстLн – 0.4	Vctlh	Vстьн + 0.4	٧	2
CTL端子电压 "L"	VCTLL	_	Vctll - 0.4	Vctll	Vctll + 0.4	V	2
输入电流	_						
工作时消耗电流	IOPE	$V_{DD} = 3.4 \text{ V}, V_{VM} = 0 \text{ V}$	_	2.0	5.0	μΑ	3
休眠时消耗电流	IPDN	$V_{DD} = V_{VM} = 1.5 V$	_	_	0.1	μΑ	3
过放电时消耗电流	IOPED	$V_{DD} = V_{VM} = 1.5 V$	_	-	1.0	μΑ	3
输出电阻			_		_	ā.	
CO端子电阻 "H"	Rсон	_	2.5	10	30	kΩ	4
CO端子电阻 "L"	Rcol	_	2.5	10	30	kΩ	4
DO端子电阻 "H"	Rоон	_	2.5	10	30	kΩ	4
DO端子电阻 "L"	RDOL	_	0.5	2	6	kΩ	4
延迟时间					_		
过充电检测延迟时间	tcu	_	$t_{\text{CU}} \times 0.4$	tcu	$t_{\text{CU}} \times 1.6$	_	5
过放电检测延迟时间	tol	_	tol×0.4	tol	tol×1.6	-	5
放电过电流检测延迟时间1	t _{DIOV1}		$t_{\text{DIOV1}} \times 0.4$	t _{DIOV1}	$t_{DIOV1} \times 1.6$	_	5
放电过电流检测延迟时间2	t _{DIOV2}	_	tdiov2 × 0.4	t _{DIOV2}	tdiov2 × 1.6	-	5
负载短路检测延迟时间	tshort	_	tshort × 0.4	tshort	tshort × 1.6	_	5
充电过电流检测延迟时间	tciov	_	tciov × 0.4	tciov	tciov × 1.6	_	5
充放电禁止延迟时间	tctl	_	$t_{\text{CTL}} \times 0.4$	tстL	t _{CTL} × 1.6	_	5

^{*1.} 并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。

■ 测定电路

CTL端子控制逻辑为动态 "H" 时,将SW1、SW3设置为OFF,SW2、SW4设置为ON。CTL端子控制逻辑为动态 "L" 时,将SW1、SW3设置为ON,SW2、SW4设置为OFF。

注意 在未经特别说明的情况下,CO端子的输出电压 (Vco) 和DO端子的输出电压 (Vpo) 的 "H"、 "L" 的判定以N沟道 FET的阈值电压 (1.0 V) 为基准。此时,CO端子请以Vvm为基准、DO端子请以Vss为基准进行判定。

1. 过充电检测电压、过充电解除电压

(测定电路1)

在V1 = 3.4 V设置后的状态下,将V1缓慢提升至 V_{CO} = "H" → "L" 时的V1的电压即为过充电检测电压 (V_{CU})。之后,将 V1缓慢下降至 V_{CO} = "L" → "H" 时的V1的电压即为过充电解除电压 (V_{CL})。 V_{CU} 与 V_{CL} 的差额即为过充电滞后电压 (V_{HC})。

2. 过放电检测电压、过放电解除电压

(测定电路2)

在V1 = 3.4 V、V2 = V5 = V6 = 0 V设置后的状态下,将V1缓慢降低至 V_{DO} = "H" → "L" 时的V1的电压即为过放电检测电压 (V_{DL})。之后,设置V2 = 0.01 V、V5 = V6 = 0 V,将V1缓慢提升至 V_{DO} = "L" → "H" 时的V1的电压即为过放电解除电压 (V_{DU})。 V_{DU} 与 V_{DL} 的差额即为过放电滞后电压 (V_{HD})。

3. 放电过电流检测电压1、放电过电流解除电压

(测定电路5)

在V1 = 3.4 V、V2 = 1.4 V、V5 = V6 = 0 V设置后的状态下,将V5提升,从电压提升后开始到Vpo = "H" \rightarrow "L" 为止的延迟时间即为放电过电流检测延迟时间1 (tplov1),此时的V5的电压即为放电过电流检测电压1 (Vplov1)。之后,设置V2 = 3.4 V、V5 = 0 V,将V2缓慢降低至Vpo = "L" \rightarrow "H" 时的V2的电压即为放电过电流解除电压 (Vriov)。当V2的电压降低到Vriov之下时,经过1.0 ms (典型值)后Vpo变为 "H",并在负载短路检测延迟时间 (tshort)内持续保持 "H"。

4. 放电过电流检测电压2

(测定电路2)

在V1 = 3.4 V、V2 = 1.4 V、V5 = V6 = 0 V设置后的状态下,将V5提升,从电压提升后开始到 V_{DO} = "H" → "L" 为止的延迟时间即为放电过电流检测延迟时间2 (t_{DIOV2}),此时的V5的电压即为放电过电流检测电压2 (V_{DIOV2})。

5. 负载短路检测电压

(测定电路2)

V1 = 3.4 V、V2 = 1.4 V、V5 = V6 = 0 V设置后的状态下,将V5提升,从电压提升后开始到 V_{DO} = "H" → "L" 为止的延迟时间即为 t_{SHORT} ,此时的V5的电压即为负载短路检测电压(V_{SHORT})。

6. 负载短路检测电压2

(测定电路2)

在V1 = 3.4 V、V2 = V5 = V6 = 0 V设置后的状态下,将V2提升,从电压提升后开始到 V_{DO} = "H" → "L" 为止的延迟时间即为 t_{Short2} , 此时的V2的电压即为负载短路检测电压2 (V_{Short2})。

7. 充电过电流检测电压

(测定电路2)

在V1 = 3.4 V、V2 = V5 = V6 = 0 V设置后的状态下,将V5降低,从电压降低后开始到Vco = "H" → "L" 为止的延迟时间即为充电过电流检测延迟时间 (tclov),此时的V5的电压即为充电过电流检测电压 (Vclov)。

8. CTL端子电压 "H"、CTL端子电压 "L"

(测定电路2)

8.1 CTL端子控制逻辑动态 "H"

在V1 = 3.4 V、V2 = V5 = V6 = 0 V设置后的状态下,将V6缓慢提升,当 V_{CO} = "H" \rightarrow "L"、 V_{DO} = "H" \rightarrow "L" 时的 V6的电压即为CTL端子电压 "H" (V_{CTLH})。

之后,将V6缓慢降低,当Vco = "L" \rightarrow "H"、 V_{DO} = "L" \rightarrow "H" 时的V6的电压即为CTL端子电压 "L" (V_{CTLL})。

8.2 CTL端子控制逻辑动态 "L"

在V1 = 3.4 V、V2 = V5 = V6 = 0 V设置后的状态下,将V6缓慢提升,当 V_{CO} = "H" → "L"、 V_{DO} = "H" → "L" 时的 V6的电压与V1的电压的差(V1 − V6)即为 V_{CTLL} 。之后,将V6缓慢降低,当 V_{CO} = "L" → "H"、 V_{DO} = "L" → "H" 时的V6的电压与V1的电压的差(V1 − V6)即为 V_{CTLH} 。

9. 工作时消耗电流

(测定电路3)

在V1 = 3.4 V、V2 = V5 = V6 = 0 V设置后的状态下,流经VDD端子的电流 (IDD) 即为工作时消耗电流 (IOPE)。但流经 CTL端子内部电阻的电流除外。

10. 休眠时消耗电流、过放电时消耗电流

(测定电路3)

10.1 有休眠功能

在V1 = V2 = 1.5 V、V5 = V6 = 0 V设置后的状态下, IDD即为休眠时消耗电流 (IPDN)。

10.2 无休眠功能

在V1 = V2 = 1.5 V、V5 = V6 = 0 V设置后的状态下, IDD即为过放电时消耗电流 (IOPED)。

11. VDD端子 – VM端子间电阻

(测定电路3)

在V1 = 1.8 V、V2 = V5 = V6 = 0 V设置后的状态下, VDD端子 – VM端子间电阻即为R_{VMD}。

12. VM端子 - VSS端子间电阻

(测定电路3)

在V1 = 3.4 V、V2 = V5 = 1.0 V、V6 = 0 V设置后的状态下, 将V5降低至0 V时的VM端子 – VSS端子间电阻即为R_{VMS}。

13. CTL端子内部电阻

(测定电路3)

13.1 CTL端子控制逻辑为动态 "H"、CTL端子内部电阻为 "上拉"

在V1 = 3.4 V、V2 = V5 = V6 = 0 V设置后的状态下,CTL端子 — VDD端子间电阻即为CTL端子内部电阻 (R_{CTL})。

13.2 CTL端子控制逻辑为动态 "H"、CTL端子内部电阻为 "下拉"

在V1 = V6 = 3.4 V、V2 = V5 = 0 V设置后的状态下, CTL端子 - VSS端子间电阻即为Rct.。

13.3 CTL端子控制逻辑为动态 "L"、CTL端子内部电阻为 "上拉"

在V1 = V6 = 3.4 V、V2 = V5 = 0 V设置后的状态下, CTL端子 - VDD端子间电阻即为Rctl。

13.4 CTL端子控制逻辑为动态 "L"、CTL端子内部电阻为 "下拉"

在V1 = 3.4 V、V2 = V5 = V6 = 0 V设置后的状态下, CTL端子 - VSS端子间电阻即为RctL。

14. CO端子电阻 "H"

(测定电路4)

在V1 = 3.4 V、V2 = V5 = 0 V、V3 = 3.0 V设置后的状态下, VDD端子 - CO端子间电阻即为CO端子电阻 "H" (RcoH)。

15. CO端子电阻 "L"

(测定电路4)

在V1 = 4.7 V、V2 = V5 = 0 V、V3 = 0.4 V设置后的状态下, VM端子 - CO端子间电阻即为CO端子电阻 "L" (Rcol)。

16. DO端子电阻 "H"

(测定电路4)

在V1 = 3.4 V、V2 = V5 = 0 V、V4 = 3.0 V设置后的状态下, VDD端子 – DO端子间电阻即为DO端子电阻 "H" (RDDH)。

17. DO端子电阻 "L"

(测定电路4)

在V1 = 1.8 V、V2 = V5 = 0 V、V4 = 0.4 V设置后的状态下, VSS端子 – DO端子间电阻即为DO端子电阻 "L" (RDoL)。

18. 过充电检测延迟时间

(测定电路5)

在V1 = 3.4 V、V2 = V5 = V6 = 0 V设置后的状态下,将V1提升,从V1超过 V_{cu} 时开始到 V_{co} = "L" 为止的时间即为过充电检测延迟时间 (t_{cu})。

19. 过放电检测延迟时间

(测定电路5)

在V1 = 3.4 V、V2 = V5 = V6 = 0 V设置后的状态下,将V1降低,从V1低于 V_{DL} 时开始到 V_{DO} = "L" 为止的时间即为过放电检测延迟时间 (t_{DL})。

20. 放电过电流检测延迟时间1

(测定电路5)

在V1 = 3.4 V、V2 = 1.4 V、V5 = V6 = 0 V设置后的状态下,将V5提升,从V5超过 V_{DIOV1} 时开始到 V_{DO} = "L" 为止的时间即为放电过电流检测延迟时间1 (t_{DIOV1})。

21. 放电过电流检测延迟时间2

(测定电路5)

在V1 = 3.4 V、V2 = 1.4 V、V5 = V6 = 0 V设置后的状态下,将V5提升,从V5超过 V_{DIOV2} 时开始到 V_{DO} = "L" 为止的时间即为放电过电流检测延迟时间2 (t_{DIOV2})。

22. 负载短路检测延迟时间

(测定电路5)

在V1 = 3.4 V、V2 = 1.4 V、V5 = V6 = 0 V设置后的状态下,将V5提升,从V5超过 V_{SHORT} 时开始到 V_{DO} = "L" 为止的时间即为负载短路检测延迟时间(t_{SHORT})。

23. 充电过电流检测延迟时间

(测定电路5)

在V1 = 3.4 V、V2 = V5 = V6 = 0 V设置后的状态下,将V5降低,从V5低于 V_{CIOV} 时开始到 V_{CO} = "L" 为止的时间即为充电过电流检测延迟时间 (t_{CIOV})。

24. 充放电禁止延迟时间

(测定电路5)

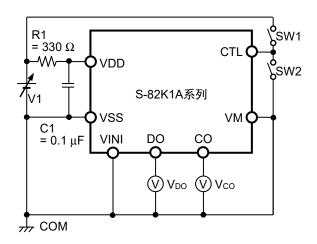
24.1 CTL端子控制逻辑动态 "H"

在V1 = 3.4 V、V2 = V5 = V6 = 0 V设置后的状态下,将V6提升,从V6超过VcтLн时开始到Vco = "L"、 V_{DO} = "L" 为止的时间即为充放电禁止延迟时间 (tcтL)。

24.2 CTL端子控制逻辑动态 "L"

在V1 = 3.4 V、V2 = V5 = V6 = 0 V设置后的状态下,将V6提升,从V1 – V6低于V_{CTLL}时开始到V_{CO} = "L"、V_{DO} = "L" 为止的时间即为t_{CTL}。

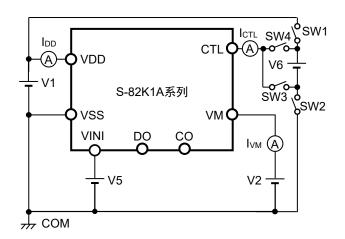
25. 开始向0 V电池充电的充电器电压 (允许向0 V电池充电)


(测定电路4)

在V1 = V5 = 0 V、V2 = V3 = -0.5 V设置后的状态下,将V2缓慢降低,流经CO端子的电流 (Ico) 超过1.0 μA时的V2 的电压的绝对值即为开始向0 V电池充电的充电器电压 (V_{OCHA})。

26. 禁止向0 V电池充电的电池电压 (禁止向0 V电池充电) (测定电路2)

(测定电路2)


在V1 = 1.8 V、V2 = -2.0 V、V5 = V6 = 0 V设置后的状态下,将V1缓慢降低,当V $_{CO}$ = "L" (V $_{CO}$ = V $_{VM}$) 时的V1的电压即为禁止向0 V电池充电的电池电压 (V $_{OINH}$)。

VDD CTL SW4 SW1 V6 V6 V6 V6 V6 V7 VSS VM SW2 VINI DO CO V2 V7 COM

图3 测定电路1

图4 测定电路2

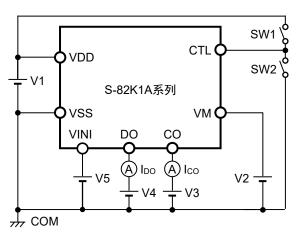


图5 测定电路3

图6 测定电路4

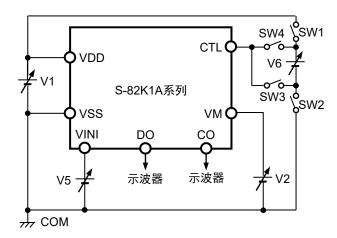


图7 测定电路5

■ 工作说明

备注 请参阅 "■ 电池保护IC的连接例"。

1. 通常状态

S-82K1A系列是通过监视连接在VDD端子 – VSS端子间的电池电压以及VINI端子 – VSS端子间电压、CTL端子 – VSS端子间电压,来控制充电和放电。

1.1 CTL端子控制逻辑动态 "H"

电池电压在过放电检测电压(V_{DL})以上且在过充电检测电压(V_{CU})以下的范围内、 $VINI端子电压在充电过电流检测电压(<math>V_{CIOV}$)以上且在放电过电流检测电压1(V_{DIOV1})以下的范围内的情况下,当CTL端子电压在CTL端子电压 "L"(V_{CTLL})以下时充电控制用FET和放电控制用FET的双方均被打开。这种状态称为通常状态,可以自由地进行充电和放电。

在通常状态下,没有连接VDD端子 – VM端子间电阻 (R_{VMD}) 和VM端子 – VSS端子间电阻 (R_{VMS})。

1.2 CTL端子控制逻辑动态 "L"

电池电压在V_{DL}以上且在V_{CU}以下的范围内、VINI端子电压在V_{CIOV}以上且在V_{DIOV1}以下的范围内的情况下,当CTL端子电压在CTL端子电压 "H" (V_{CTLH}) 以上时充电控制用FET和放电控制用FET的双方均被打开。这种状态称为通常状态,可以自由地进行充电和放电。

在通常状态下,没有连接Rvmp和Rvms。

注意 初次连接电池时,有可能不能放电。在这种情况下,如果连接充电器即可变为通常状态。

2. 过充电状态

2.1 V_{CL} ≠ V_{CU} (过充电解除电压和过充电检测电压相异的产品)

在充电中,通常状态的电池电压若超过Vcu,且这种状态保持在过充电检测延迟时间 (tcu) 以上的情况下,会关闭充电控制用FET而停止充电。这种状态称为过充电状态。 过充电状态的解除,分为如下的2种情况。

- (1) 如果VM端子电压在低于0.35 V (典型值) 的情况下,当电池电压降低到过充电解除电压 (Vcl.) 以下时,即可解除过充电状态。
- (2) 如果VM端子电压在0.35 V (典型值) 以上的情况下, 当电池电压降低到Vcu以下时, 即可解除过充电状态。

检测出过充电之后,连接负载开始放电,由于放电电流通过充电控制用FET的内部寄生二极管流动,因此VM端子电压比VSS端子电压增加了内部寄生二极管的 V_f 电压。此时,如果VM端子电压在0.35~V(典型值)以上的情况下,当电池电压在 V_{CU} 以下时,即可解除过充电状态。

注意 对于超过Vcu而被充电的电池,即使连接了较大值的负载,也不能使电池电压下降到Vcu以下的情况下,在电池电压降低到Vcu为止,放电过电流检测以及负载短路检测是不能发挥作用的。但是,实际上电池的内部阻抗有数十mΩ,在连接了可使过电流发生的较大值负载的情况下,因为电池电压会马上降低,因此放电过电流检测以及负载短路检测是可以发挥作用的。

2. 2 Vcl = Vcu (过充电解除电压和过充电检测电压相同的产品)

在充电中,通常状态的电池电压若超过Vcu,且这种状态保持在tcu以上的情况下,会关闭充电控制用FET而停止充电。 这种状态称为过充电状态。

当VM端子电压在0.35 V (典型值) 以上,并且电池电压降低到Vcu以下时,即可解除过充电状态。

检测出过充电之后,连接负载开始放电,由于放电电流通过充电控制用FET的内部寄生二极管流动,因此VM端子电压比VSS端子电压增加了内部寄生二极管的 V_f 电压。此时,如果VM端子电压在0.35~V~(典型值)以上的情况下,当电池电压在 V_{CU} 以下时,即可解除过充电状态。

- 注意1. 对于超过Vcu而被充电的电池,即使连接了较大值的负载,也不能使电池电压下降到Vcu以下的情况下,在电池电压降低到Vcu之下为止,放电过电流检测以及负载短路检测是不能发挥作用的。但是,实际上电池的内部阻抗有数十mΩ,在连接了可使过电流发生的较大值负载的情况下,因为电池电压会马上降低,因此放电过电流检测以及负载短路检测是可以发挥作用的。
 - 2. 检测出过充电之后,在连接充电器的情况下,即使电池电压降低到VcL之下,也不能解除过充电状态。断开与充电器的连接,当放电电流流动,VM端子电压上升到0.35 V (典型值) 之上时,既可解除过充电状态。

3. 过放电状态

当通常状态下的电池电压在放电过程中降低到V_{DL}之下,且这种状态保持在过放电检测延迟时间(t_{DL})以上的情况下,会 关闭放电控制用FET而停止放电。这种状态称为过放电状态。

在过放电状态下,由于S-82K1A系列内部的VDD端子 – VM端子间可通过R_{VMD}来进行短路,因此VM端子会因R_{VMD}而被 上拉。

在过放电状态下如果连接充电器,当VM端子电压降低到0 V (典型值)之下时,电池电压在V□以上,解除过放电状态。VM端子电压不低于0 V (典型值)时,电池电压在过放电解除电压(VDU)以上,解除过放电状态。在过放电状态下,没有连接RvMs。

3.1 有休眠功能

在过放电状态下,如果VDD端子 – VM端子间的电压差降低到0.8 V (典型值)以下,休眠功能则开始工作,消耗电流将减少到休眠时消耗电流(IPDN)。通过连接充电器,使VM端子电压降低到0.7 V (典型值)以下,来解除休眠功能。

- 在不连接充电器, VM端子电压≥0.7 V (典型值) 的情况下, 即使电池电压在VDU以上也维持过放电状态。
- 在连接充电器, 0.7 V (典型值) > VM端子电压 > 0 V (典型值) 的情况下, 电池电压在 VDU以上, 解除过放电状态。
- 在连接充电器,0 V (典型值)≥VM端子电压的情况下,电池电压在VL以上,解除过放电状态。

3.2 无休眠功能

在过放电状态下,即使VDD端子 - VM端子间的电压差降低到0.8 V (典型值)以下,休眠功能也不工作。

- 在不连接充电器,VM端子电压≥0.7 V (典型值)的情况下,电池电压在Vou以上,解除过放电状态。
- 在连接充电器, 0.7 V (典型值) > VM端子电压 > 0 V (典型值) 的情况下, 电池电压在 V D 以上, 解除过放电状态。
- 在连接充电器,0 V (典型值)≥VM端子电压的情况下,电池电压在VDL以上,解除过放电状态。

4. 放电过电流状态 (放电过电流1、放电过电流2、负载短路、负载短路2)

4.1 放电过电流1、放电过电流2、负载短路

处于通常状态下的电池,当放电电流达到所定值以上时,会导致VINI端子电压上升到 V_{DIOV1} 以上,若这种状态持续保持在放电过电流检测延迟时间1 (t_{DIOV1}) 以上的情况下,会关闭放电控制用FET而停止放电。这种状态称为放电过电流状态。

在放电过电流状态下,S-82K1A系列内部的VM端子 – VSS端子间可通过R_{VMS}来进行短路。但是,在连接着负载的期间,VM端子电压由于连接着负载而变为VDD端子电压。若断开与负载的连接,则VM端子电压恢复回VSS端子电压。当VM端子电压降低到V_{RlOV}以下时,即可解除放电过电流状态。

在放电过电流状态下,没有连接R_{VMD}。

4.2 负载短路2

处于通常状态下的电池,当连接能导致放电过电流发生的负载时,VM端子电压上升到VsHORT2以上的状态持续保持在负载短路检测延迟时间(tsHORT)以上的情况下,会关闭放电控制用FET而停止放电。这种状态称为放电过电流状态。放电过电流状态的解除方法与"4.1 放电过电流1、放电过电流2、负载短路"相同。

4.3 通过CTL端子进行的放电过电流状态复位功能

4.3.1 有通过CTL端子进行的放电过电流状态复位功能

在放电过电流状态下,在CTL端子的激活状态持续保持在充放电禁止延迟时间(tcπ)以上的情况下,会关闭充电控制用FET和放电控制用FET而停止充电和放电,变成充放电禁止状态。 之后,将CTL端子设定成非激活状态,解除充放电禁止状态,即可恢复到通常状态。

4. 3. 2 无通过CTL端子进行的放电过电流状态复位功能

在放电过电流状态下,即使在CTL端子的激活状态持续保持在tcTL以上的情况下,也不会变成充放电禁止状态,而保持放电过电流状态。

之后,即使将CTL端子设定成非激活状态也不能恢复到通常状态,而保持放电过电流状态。

5. 充电过电流状态

在通常状态下的电池,由于充电电流在额定值以上,会导致VINI端子电压降低到Vciov以下,若这种状态持续保持在充电过电流检测延迟时间(tciov)以上的情况下,会关闭充电控制用FET而停止充电。这种状态称为充电过电流状态。断开与充电器的连接,当放电电流流动,VM端子电压上升到0.35 V (典型值)以上时,既可解除充电过电流状态。在过放电状态下,充电过电流检测不发挥作用。

6. 充放电禁止状态

6.1 CTL端子控制逻辑动态 "H"

当CTL端子电压在CTL端子电压 "H" (V_{CTLH}) 以上,且此状态持续保持在充放电禁止延迟时间 (t_{CTL}) 以上时,会关闭充电控制用FET和放电控制用FET而停止充电和放电。这种状态称为充放电禁止状态。 当CTL端子电压在CTL端子电压 "L" (V_{CTLL}) 以下时,既可解除充放电禁止状态。

6.2 CTL端子控制逻辑动态 "L"

当CTL端子电压在VcTLL以下,且此状态持续保持在tcTL以上时,会关闭充电控制用FET和放电控制用FET而停止充电和放电。这种状态称为充放电禁止状态。

当CTL端子电压在VcTLH以上时,既可解除充放电禁止状态。

6.3 CTL端子内部电阻

6. 3. 1 CTL端子内部电阻为 "上拉"

CTL端子通过CTL端子内部电阻 (RcTL) 向VDD端子短路。

6.3.2 CTL端子内部电阻为 "下拉"

CTL端子通过RcTL向VSS端子短路。

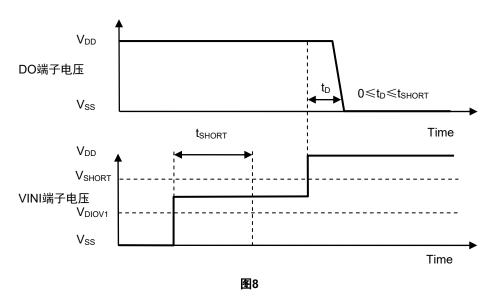
过放电状态下RcTL被切断,CTL端子的输入输出电流亦被截断。 在过放电状态下,通过CTL端子进行的充放电控制不发挥作用。

7. 允许向0 V电池充电

已被连接的电池电压因自身放电,在为0 V时的状态下开始变为可进行充电的功能。在EB+端子与EB-端子之间连接电压在向0 V电池充电开始充电器电压 (Vocha) 以上的充电器时,充电控制用FET的门极会被固定为VDD端子电压。借助于充电器电压,当充电控制用FET的门极和源极间电压达到阈值电压以上时,充电控制用FET将被导通 (ON) 而开始进行充电。此时,放电控制用FET被截止 (OFF),充电电流会流经放电控制用FET的内部寄生二极管而流入。在电池电压变为Vol以上时恢复回通常状态。

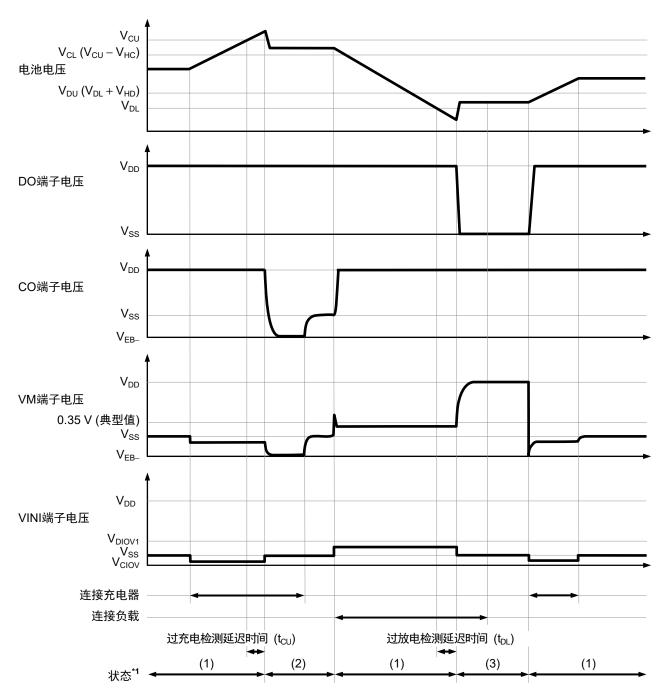
- 注意 1. 有可能存在被完全放电后,不推荐再一次进行充电的锂离子可充电电池。这是由于锂离子可充电电池的特性而决定的,所以当决定允许或禁止向0 V电池充电时,请向电池厂商确认详细情况。
 - 2. 对于充电过电流检测功能来说,向0 V电池充电更具优先权。因此,允许向0 V电池充电的产品,在电池电压比 Vol.还低时会被强制地充电,而不能进行充电过电流的检测工作。

8. 禁止向0 V电池充电


连接了内部短路的电池 (0 V电池) 时,禁止充电的功能。电池电压在0 V电池充电禁止电池电压 (Voinh) 以下时,充电控制用FET的门极被固定在EB-端子电压,而禁止进行充电。当电池电压在Voinh以上时,可以进行充电。

注意 有可能存在被完全放电后,不推荐再一次进行充电的锂离子可充电电池。这是由于锂离子可充电电池的特性而决定的,所以当决定允许或禁止向0 V电池充电时,请向电池厂商确认详细情况。

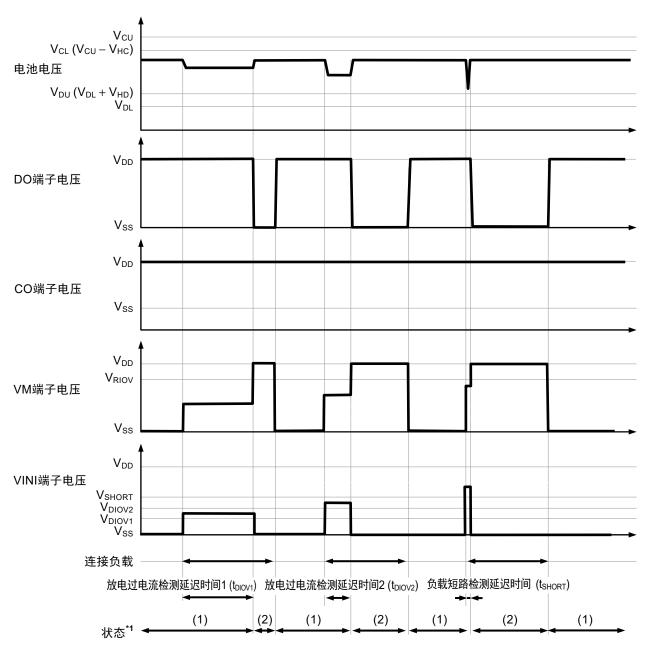
9. 延迟电路


各种检测延迟时间是将约4 kHz的时钟进行计数之后而分频计算出来的。

备注 tdiov1, tdiov2, tshort的计时是从检测出Vdiov1时开始的。因此,从检测出Vdiov1时刻起到超过tdiov2, tshort之后,当检测出Vdiov2, Vshort时,从检出时刻起分别在tdiov2, tshort之内立即关闭放电控制用FET。

■ 工作时序图

1. 过充电检测、过放电检测

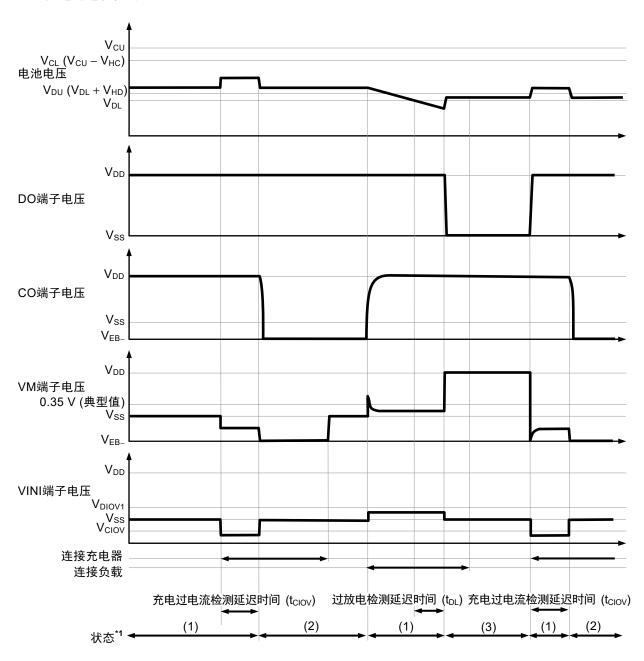


*1. (1):通常状态 (2):过充电状态 (3):过放电状态

备注 假设为恒流状态下的充电。

图9

2. 放电过电流检测

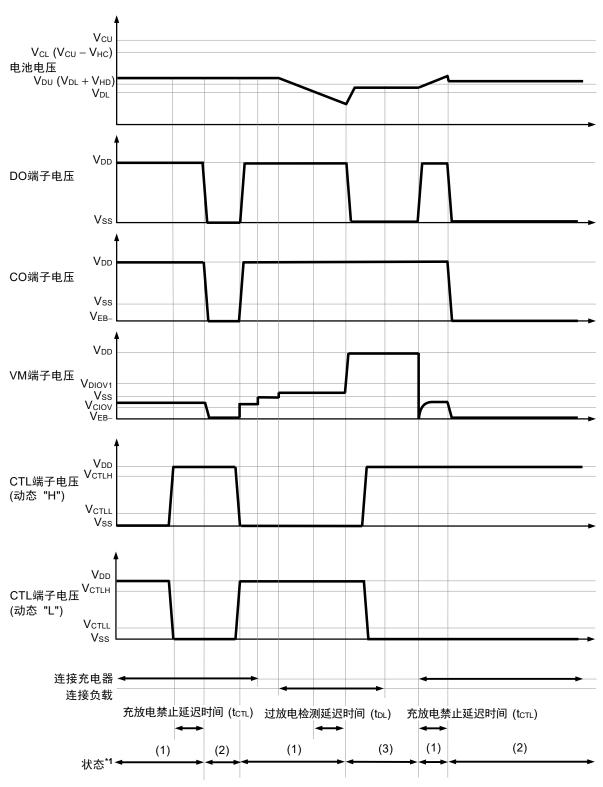

***1.** (1): 通常状态

(2): 放电过电流状态

备注 假设为恒流状态下的充电。

图10

3. 充电过电流检测


*1. (1): 通常状态

(2): 充电过电流状态 (3): 过放电状态

备注 假设为恒流状态下的充电。

图11

4. 充放电禁止工作

*1. (1):通常状态 (2):充放电禁止状态 (3):过放电状态

备注 假设为恒流状态下的充电。

■ 电池保护IC的连接例

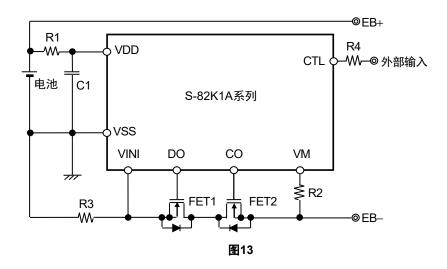


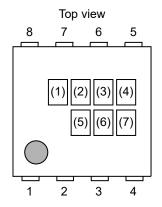
表8 外接元器件参数

	7 J J J J J J J J J J J J J J J J J J J						
符号	元器件	目的	最小值	典型值	最大值	备注	
FET1	N沟道 MOS FET	放电控制	-	-	-	阈值电压≤过放电检测电压*1	
FET2	N沟道 MOS FET	充电控制	_	-	-	阈值电压≤过放电检测电压*1	
R1	电阻	ESD对策、 电源变动对策	270 Ω	330 Ω	1.2 kΩ*²	-	
C1	电容	电源变动对策	0.068 μF	0.1 μF	2.2 μF	_	
R2	电阻	ESD对策、 充电器反向连接对策	300 Ω	470 Ω	1.5 kΩ	-	
R3	电阻	过电流检测	_	1.5 m Ω	1	_	
R4	电阻	CTL端子输入保护	_	1 kΩ	_	_	

^{*1.} 使用的FET的阈值电压在过放电检测电压以上的情况下,有可能导致在过放电检测之前停止放电的情况发生。

注意 1. 参数有可能不经预告而作更改。

2. 未确认连接示例以外的电路工作。连接示例和参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分的 实测后再设定参数。

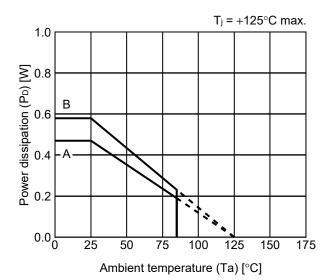

^{*2.} 过充电检测电压精度由R1 = 330 Ω 保证。连接其他数值的电阻会降低精度。

■ 注意事项

- 请注意输入输出电压、负载电流的使用条件,使IC内的功耗不超过容许功耗。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如因其产品中对该IC的使用方法或产品的规格,或因进口国等原因,包含本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

■ 标记规格

1. HSNT-8(1616)


(1) : 产品简称 (空白) (2)~(4) : 产品简称

(5)~(7) : 批号

■ Power Dissipation

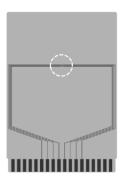
Ε

HSNT-8(1616)

 Board
 Power Dissipation (P₀)

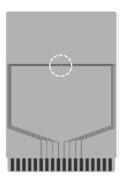
 A
 0.47 W

 B
 0.58 W

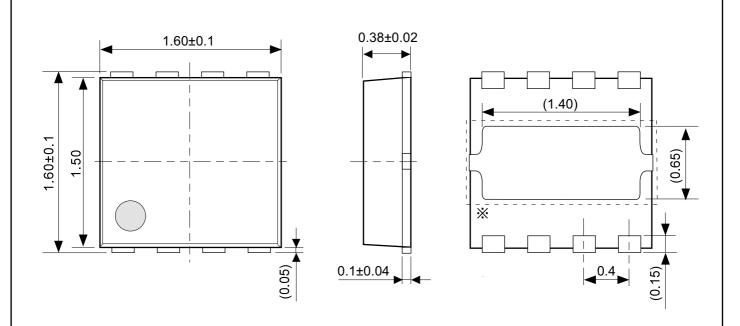

 C

 D

HSNT-8(1616) Test Board


O IC Mount Area

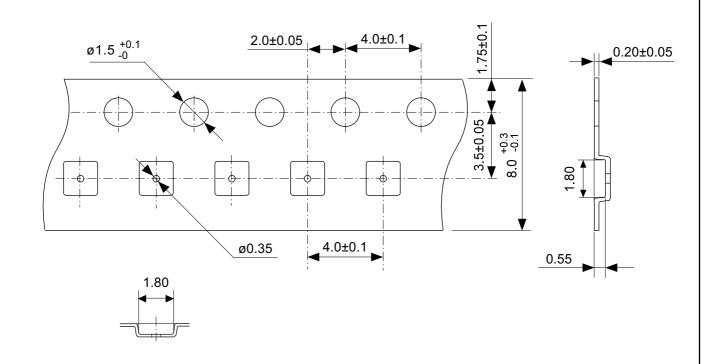
(1) Board A

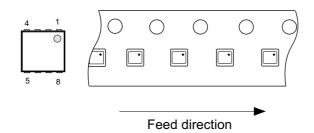

Item		Specification		
Size [mm]		114.3 x 76.2 x t1.6		
Material		FR-4		
Number of copper foil layer		2		
	1	Land pattern and wiring for testing: t0.070		
Connor foil lover [mm]	2	-		
Copper foil layer [mm]	3	-		
	4	74.2 x 74.2 x t0.070		
Thermal via		-		


(2) Board B

Item		Specification		
Size [mm]		114.3 x 76.2 x t1.6		
Material		FR-4		
Number of copper foil layer		4		
	1	Land pattern and wiring for testing: t0.070		
Connor foil lover [mm]	2	74.2 x 74.2 x t0.035		
Copper foil layer [mm]	3	74.2 x 74.2 x t0.035		
	4	74.2 x 74.2 x t0.070		
Thermal via		-		

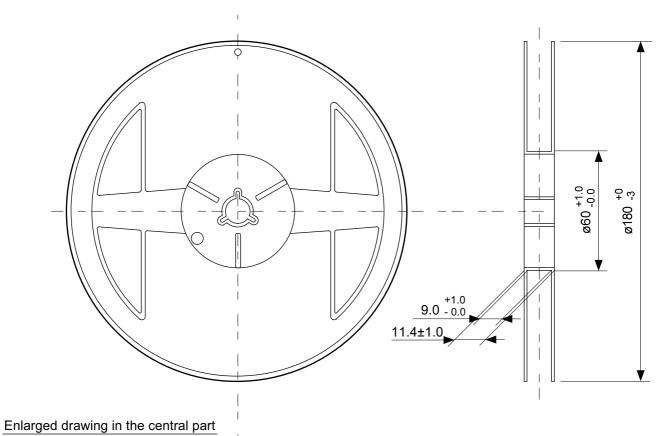
No. HSNT8-B-Board-SD-1.0

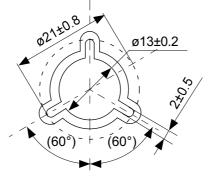




The heat sink of back side has different electric potential depending on the product.
 Confirm specifications of each product.
 Do not use it as the function of electrode.

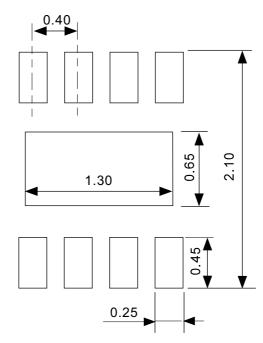
No. PY008-A-P-SD-1.0


TITLE	HSNT-8-B-PKG Dimensions			
No.	PY008-A-P-SD-1.0			
ANGLE	\$			
UNIT	mm			
ABLIC Inc.				



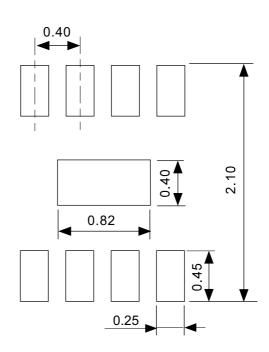
No. PY008-A-C-SD-1.0

TITLE	HSNT-8-B-Carrier Tape			
No.	PY008-A-C-SD-1.0			
ANGLE				
UNIT	mm			
ABLIC Inc.				



No. PY008-A-R-SD-1.0

TITLE	HSNT-8-B-Reel		
No.	PY008-A-R-SD-1.0		
ANGLE		QTY.	5,000
UNIT	mm		
ABLIC Inc.			


Land Pattern

Caution It is recommended to solder the heat sink to a board in order to ensure the heat radiation.

放熱性を確保する為に、PKGの裏面放熱板(ヒートシンク)を基板に 注意 半田付けする事を推奨いたします。

Metal Mask Pattern

- Caution ① Mask aperture ratio of the lead mounting part is 100%.
 - 2 Mask aperture ratio of the heat sink mounting part is 40%.
 - 3 Mask thickness: t0.12 mm

注意 ①リード実装部のマスク開口率は100%です。

- ②放熱板実装のマスク開口率は40%です。
- ③マスク厚み: t0.12 mm

No. PY008-A-L-SD-1.0

TITLE	HSNT-8-B -Land Recommendation	
No.	PY008-A-L-SD-1.0	
ANGLE		
UNIT	mm	
ABLIC Inc.		

免责事项 (使用注意事项)

- 1. 本资料记载的所有信息 (产品数据、规格、图、表、程序、算法、应用电路示例等) 是本资料公开时的最新信息,有可能未经预告而更改。
- 2. 本资料记载的电路示例和使用方法仅供参考,并非保证批量生产的设计。使用本资料的信息后,发生并非因本资料记载的产品(以下称本产品)而造成的损害,或是发生对第三方知识产权等权利侵犯情况,本公司对此概不承担任何责任。
- 3. 因本资料记载错误而导致的损害,本公司对此概不承担任何责任。
- 4. 请注意在本资料记载的条件范围内使用产品,特别请注意绝对最大额定值、工作电压范围和电气特性等。 因在本资料记载的条件范围外使用产品而造成的故障和(或)事故等的损害,本公司对此概不承担任何责任。
- 5. 在使用本产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本产品出口海外时,请遵守外汇交易及外国贸易法等的出口法令,办理必要的相关手续。
- 7. 严禁将本产品用于以及提供(出口)于开发大规模杀伤性武器或军事用途。对于如提供(出口)给开发、制造、使用或储藏核武器、生物武器、化学武器及导弹,或有其他军事目的者的情况,本公司对此概不承担任何责任。
- 8. 本产品并非是设计用于可能对生命、人体造成影响的设备或装置的部件,也非是设计用于可能对财产造成损害的设备或装置的部件(医疗设备、防灾设备、安全防范设备、燃料控制设备、基础设施控制设备、车辆设备、交通设备、车载设备、航空设备、太空设备及核能设备等)。请勿将本产品用于上述设备或装置的部件。本公司事先明确标示的车载用途例外。作为上述设备或装置的部件使用本产品时,或本公司事先明确标示的用途以外使用本产品时,所导致的损害,本公司对此概不承担任何责任。
- 9. 半导体产品可能有一定的概率发生故障或误工作。为了防止因本产品的故障或误工作而导致的人身事故、火灾事故、社会性损害等,请客户自行负责进行冗长设计、防止火势蔓延措施、防止误工作等安全设计。并请对整个系统进行充分的评价,客户自行判断适用的可否。
- 10. 本产品非耐放射线设计产品。请客户根据用途,在产品设计的过程中采取放射线防护措施。
- 11. 本产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。另外,晶元和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 12. 废弃本产品时,请遵守使用国家和地区的法令,合理地处理。
- 13. 本资料中也包含了与本公司的著作权和专有知识有关的内容。本资料记载的内容并非是对本公司或第三方的知识产权、 其它权利的实施及使用的承诺或保证。严禁在未经本公司许可的情况下转载、复制或向第三方公开本资料的一部分或全 部。
- 14. 有关本资料的详细内容等如有不明之处,请向代理商咨询。
- 15. 本免责事项以日语版为正本。即使有英语版或中文版的翻译件, 仍以日语版的正本为准。

2.4-2019.07

